Machine Learning for Genetic Signatures

MLExpResso

Package for analyzing genes expression and CpG probes methylation.

Imports installation

Our package uses a few packages from Bioconductor. To install them, start R and enter

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("DESeq")

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("DESeq2")

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("limma")

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("edgeR")

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("methyAnalysis")

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("TxDb.Hsapiens.UCSC.hg18.knownGene")

## try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("org.Hs.eg.db")

Installation

To install this package, start R and enter:

devtools::install_github("geneticsMiNIng/MLGenSig/MLExpResso")

In order to run examples you shall install MLExpRessoData.

devtools::install_github("geneticsMiNIng/MLGenSigdata/MLExpRessodata")

Example dashboards

plot_volcanoesplot_gene

Acknowledgments

Work on this package was financially supported by the ‘NCN Opus grant 2016/21/B/ST6/02176’.