Function calculate_comparison_table
produces a dataset containing p-values and folds from tests evaluated on two datasets e.g methylation or expression. In addition, it produces an importance ranking column, which is the geometric mean of p-values from both tests and a column with a number of probes related to the gene.
calculate_comparison_table(data1, data2, condition1, condition2, test1, test2, genom.data = MLExpResso::illumina_humanmethylation_27_data, genes.col = 11)
data1 | First dataset, suitable for |
---|---|
data2 | Second dataset, suitable for |
condition1 | Condition for first dataset. |
condition2 | Condition for second dataset. |
test1 | Type of test for first dataset. |
test2 | Type of test for second dataset. |
genom.data | Data frame which contains information about CpG probes and corresponding genes, by default in our package we use |
genes.col | Number of column in genom.data containing informations about genes (genes symbols). |
Data frame containing logatithm of fold and p-values from chosen tests.
# NOT RUN { library(MLExpRessoData) condition_exp <- ifelse(BRCA_exp$SUBTYPE == "LumA","LumA", "other") condition_met <- ifelse(BRCA_met$SUBTYPE == "LumA","LumA", "other") BRCA_methylation_gen <- aggregate_probes(BRCA_met) data_met <- BRCA_methylation_gen data_exp <- BRCA_exp compare <- calculate_comparison_table(data_exp,data_met,cond_exp,cond_met, "nbinom2", "ttest") # }